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Received 28 November 1994, in final form 21 February 1995 

AbstracL We point out that a newly introduced recursive algorithm for lattice polymers 
has a much wider range of applicability. In pmiticular, we apply it to the simulation of off- 
lattice polymers wilh Lennan-Jones potentials between non-banded monomers and either delta 
or harmonic potentials between bonded monomers. Our algorithm allows particularly easy 
calculations of the free energy. and Seems in general more efficient than other existing algorithms. 

1. Introduction 

In a number of recent papers, new Monte Carlo schemes for simulating off-lattice polymers 
have been proposed [l-81. A particular aspect there was the calculation of chemical 
potentials. This is not easy in most schemes, which has led to some controversy [9, 101. 
In this paper we want to point out that a recently introduced recursive implementation of 
the enrichment method for lattice polymers [ I  I ]  can be easily adapted to this problem. It 
is both easy to implement and efficient, and the computation of the chemical potential is 
straightforward. Indeed. for polymers without long-range monomer-monomer interactions 
and without interactions with any solvent our method seems to be faster than all methods 
mentioned above. It is not efficient for systems at extremely low energies (when Boltzmann 
factors due to attractive potentials between individual monomers become >IO), and for 
systems with long-range forces [12, 131. 

Though we shall apply our algorithm only to polymer systems, we should point out that 
it is much more general. It can be applied to any equilibrium system which can be broken 
up into discrete units. labelled by an index i = 1, . . . , N ,  and whose internal energy can 
be written as 

N 

u = c u i  (1) 
i = l  

where Vi depends only on units with label i‘ < i. In the case of a polymer with potential 
uij between non-bonded monomers and potential vi between monomers i and i - 1, we 
choose of course U, = ui + E. . uij for i z 1, while U1 = V I  is evaluated with 10 = 0. 
Thus the start of the polymer chain is anchored to x = 0. 

The algorithm basically tries to build the system by assembling it unit by unit. To 
obtain the correct Boltzmann weights, the entire assembled configuration has to be discarded 
occasionally (with probabilities depending on these weights) if the following units do not 
fit. A typical example is a self-avoiding walk on a lattice, where the configuration has 
to be discarded if the next step would lead to a self-intersection. In order to compensate 
for this ‘attrition’. we use an ‘enrichment’ method, the basic idea of which was already 
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introduced more than 30 years ago [14]. Instead of trying just one continuation from a 
partially assembled system, the intermediate sample is ‘enriched’ by replicas which serve 
as starting points for independent continuations. Thus from each partly assembled system 
more than one continuation is attempted. These attempts are made irrespective of whether 
one of them is successful or not, which leads immediately to an unbiased Gibbs ensemble 
and which distinguishes the method from most other proposals to overcome attrition. 

But in contrast to earlier implementations of the enrichment idea which were of ‘breadth 
first’ type [ 15, 16, 17, 181, our implementation is ‘depth first’ 1191. This implies completely 
different data structures. In particular, it means that a partly assembled system can reside 
in the fast memory of the computer even in very large simulations. This avoids the very 
time-consuming data transfer needed in breadth first implementations, unless the systems 
are very small. As discussed in 1171, simulating a system with N units one has to simulate 
>> N ensemble members simultaneously in a breadth first algorithm. This requires a storage 
space =- O(Nz). which limits severely the system sizes. But even if the entire ensemble 
fits into the memory, a breadth first algorithm is slower by a factor U(N) since adding a 
new unit takes a time O ( N )  1171 (there is a finite probability that a new replica has to be 
created) while it  needs only a time O(1) for a depth first algorithm. Also, the simplest 
and most intuitive implementation of a depth first algorithm is via recursive function calls. 
In this case the compiler performs all the book-keeping which is fast but quite non-trivial 
in this approach. Thus our method avoids all problems which have made the enrichment 
method unpopular in the past. 

The only disadvantage of a depth first implementation is that we have to guess the 
attrition in advance. In a breadth first approach, level i is treated only after all previous 
levels have been finished, and thus the attrition on the previous levels is known. If we know 
the amount of attrition sufficiently well from other sources, we do not have any problem in 
a depth first approach either. Otherwise, the best strategy is to start with small systems and 
a conservative estimate of the attrition, and to increase the system size in separate runs as 
the attrition gets better and better known [ZO]. 
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2. Algorithm 

Our aim is to compute the partition function 

ZN = J dxl . . . dXN e-pu(xl-xN) p = ( k s T ) - l .  (2) 

In addition, we consider also ‘partial partition functions’ which describe the last N - i  units 
in the static background field created by the first i + 1 units, 

Z ~ - ~ l ~ ( x ~  , . . x , )  = dzi+, . . . dxN e-pEy=,”=,+t u j ( z l - r j ) .  (3) J 
They can be written recursively, 

Z N - ~ + ~ I ~ - I ( X I ,  . . . , xi-1) = dzj  e-8u’(z1-r) ZN 4 I t  . ,(zj 9 , . . I  Xi) (4) 

with &lN(Xl, . . . ,IN) 5 1 and Z N I ~  ZN. The basic strategy will be to compute Monte 
Carlo estimates for the partial partition functions using this recursion relation (this will 
be done implicitly, and the explicit code needed to do it will be very compact). The total 
partition function is generated by ‘assembling’ the last units first (which means just summing 
over suitable statistical samples), and working one’s way back. The task is completed when 
finally the sample points for the first unit are summed over. With this strategy in mind 

J 
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we will in the following concentrate on one typical step in the recursion relation where 
Z ~ - i l ; ( z i  . . . zi) is assumed to be known, and Z N - i + l l i - ] ( X j  . . . zi-1) is to be computed. 

We assume that the potential U, can be split into two parts, 

(01 (5) Ui(21 .. . ~ i )  = Vi ( ~ 1  .. .zi) + A U ~ ( Z I . .  .z;) 

with the following properties: 

(i) the partial partition functions Z$i associated with U@) can be computed for each 
background configuration (SI . . . zi) either analytically or by some other method which is 
independent of the present Monte Carlo method; 

(ii) a fast (pseudo-)random number generator exists which produces points E, distributed 
with the density 

(notice that this is normalized due to (4)); 

background configurations and is not too big. 

We should strcss that the last condition affects only the efficiency of the method, but is 
not related to any bias. In particular, we make no series expansion or truncation in higher 
powers of AUi, or anything of that sort. In general, it will be sufficient if U,"' has correct 
asymptotic behaviour for the integral to converge, and has roughly the same shape as U;. 

(iii) AU; is 'kind' in the sense that the integral Jdcp,"e-@Aut converges for all 

Our U(o) is similar to the 'guiding field in (16, 171. 
Using this decomposition of U; one shows easily that 

Z N - i + i l i - l ( z l  . . , zl-1) 

= Z$Li+i l i - l ( z~  . . .zi-l) dEp,'O'(Elzl . . .z t- l)  

The integral over I:  can now be approximated by a sum over random points & obtained by 
means of the above random number generator, and we obtain 

Z N - ~ + I I ~ - I ( Z I  .. .Zi-l) 

Assume that we have already an estimator for Z N + .  Then an estimator for zN-i+ili-i iS 

obtained by either associating a weight 

with each E k ,  or-and this is the method used in our approach-by replacing each 4 in the 
average by p;wi  replicas of itself, each counted with unit weight and labelled by an index 
a. Here pi is a parameter (independent of z; and &) which is in principle arbitrary (more 
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about it will be said below) and which controls the size of the sample by counterbalancing 
the attritiont during the step i -+ i - I .  This gives then our MC estimate 
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The superscript a on the partial partition function on the RHS is to indicate that we use of 
course different sample points ( q + l .  . , Z N )  for each replica, even though the backgrounds 
are the same. 

The parameter pi has to be chosen carefully: large pi will lead to samples whose sizes 
increase quickly with i, leading to excessive CPU times for large N, while small pi lead to 
too small samples for large i. Optimally, pi should be chosen such that the sample size 
is roughly independent of i. Notice that this means in particular that M will not be large. 
Indeed, most numerical results quoted below are obtained with M = 1. Large statistics 
are not obtained by trying many different continuations of each partially built chain, but 
by making many independent runs. It is only for extremely low temperatures (not studied 
here) that M >> 1 should be advantageous since it allows a more uniform covering of 
configuration space. 

We should point out that the above two possibilities (of using wi either as a weight or 
as a multiplicity of replicas) are indeed just two special cases within a much wider range of 
possible choices. They are all distinguished by a different balance between equidistribution 
of the statistical sample and equal weights put on all sample points. It might well be that for 
different purposes different variants are optimal, but we shall in the following discuss only 
the choice of uniform weights, corresponding to perfect importance sampling. It has the 
advantage that all thermal averages are just normal averages without any additional weight 
factors except for the weights pi. In particular, the incremental chemical potential is simply 

(11) 

where m, is the total number of sample point replicas at level i (i.e., the total number of 
subroutine calls at depth i in the algorithm described below). 

Technically, our method is implemented by means of a recursively called subroutine 
which has the level i as argument. Basically, it just chooses a random point 5, inserts a 
monomer at this point and computes its weight wi(c),  and makes on average piwi(.$) calls 
to itself if i e N. with new argument i + 1. After returning from all these subroutine calls, 
the monomer at 5 is removed and the subroutine is left. This is of course complemented 
by updating the statistics for whatever observable is to be measured. 

Finally, we have to specify what we mean by ‘make.. .calls on average’. In principle, 
we can choose any distribution for the number of calls, provided it gives the right average. 
But efficiency will depend on this choice. One possibility would be e.g. a Poissonian 
(this would be in spirit with the first application of this method in a lattice model [ZO]), 
but in general this is not the best choice. As in lattice models, it seems that the optimal 
choice depends on the specific situation, and in extreme cases (steep potentials and low 
temperatures) some experimentation will be needed. As a rule of thumb we propose 
to choose the distribution such that it has the smallest possible variance [ l l ] .  Thus, if 
piwi ( t )  = k +  9 with 9 E [O, 1) and k integer, we first make k calls and then add one more 
call with probability 17. 

Z; mi 
zi-1 mi-ipi 

/L; = -ksT log - % -ksT log - 

t We use the word ‘attrition’ for conformity with the use in the literature on self-avoiding walks. It should 
be noted that in our case il does not necessarily imply a depletion of chains. but CM also imply the opposite. 
depending on the sign of the potential 



MC simulations of off-lartice polymers 3093 

The N dependence of the required CPU time depends on several details. For high 
temperatures and weak effects of self-avoidance the end of the chain makes essentially 
a random walk. Thus to create one statistically independent chain of N monomers we 
need U ( N 2 )  steps. This is the same as e.g. for reptation [Zl]. The actual CPU time 
depends on whether the potential is cut off at a finite distance or not, and whether efficient 
neighbour search [23] is used in the former case. All algorithms become less efficient for low 
temperatures and high monomer densities, but it seems that our algorithm is least affected. 
The pivot algorithm, which is the most efficient for high T and weak self-avoidance [22] 
(-U(N) steps), becomes essentially useless in this limit. 

3. Applications 

We applied this to two versions of a model where non-bonded monomers interact by 
Lennard-Jones potentials in 3D space, 

ui, = 4[r-I2 ' I  - (12) 
rij = l ~ i j l  = 1zi - 5 J I '  (13) 

(14) 

In the first version [Z], the force between bonded monomers is harmonic, 
K 

W .  - - (ri.i-l - 1)' ' -  2 
K =400 (15) 

for ri.i-1 > 0.5. For ri.j-1 e 0.5, the potential is infinite. In the second version [7], it is 
simply provided by hard rods which keep a fixed distance Ti . ; -1  = 1 .  Notice that we did 
not truncate the potential at large distances, in contrast to previous studies [ I ,  71. As far 
as we can see, the approximations involved in correcting for this truncation should be the 
only possible source for eventual disagreements with these works. 

In the second version, a natural choice of U:) is given by an isotropic delta potentialt 
fixing r,,,-l at 1. Thus the vectors were chosen randomly on the surface of a sphere 
centred at xt-l. The corresponding partial partition functions are ZLy! = 2;" = ( 4 n y .  

In the first version the choice is less obvious since it is not so easy to produce random 
points according to e-p", with ui given by (14). We thus took 

(16) 

For this choice the radial dishibution function is a Gaussian centred at r = 1 ,  , d 0 ) ( ~ + l )  cx 
r& e-#"(, and 2;') = [ ( Z r ) 3 / ( ~ f i ) l " / z  for ~ f i  >> I$. 

Figure 1 shows our data for the excess chemical potential fipa for the hard rod and 
the harmonic potential, respectively. The value ,3 = 1/1.2 was chosen to compare our 
data to those of [7]. From figure 5 of that paper we see that fip- = -10.4 + 0.4 for 
a hard-rod chain with N = 30 monomers. This is much smaller (in absolute value) than 
our estimate f i ~ "  = - 15.35 & 0.05. Part of this discrepancy can be explained by the fact 
that the Lennard-Jones potential was auncated in [7] at r = r, = 2.5 and its contribution 
from r > r, was estimated analytically. This was not done in our simulations, where all 
potentials were taken into account exactly. But by performing the same truncation as in [71 
without correcting for it at all, we estimated that even this is much too small (=9-10%) 

t By this we mean of c o m e  not suictly a delta function but a potential which is singular enough to give a delra 
function for the equilibrium density. e-6". = 6h.i-i  - I) .  
$ If rhis condition is not fulfilled we get an additional term proportional Io an error function due lo the cenuing 
of ,,,,-I around unity. 

U, (0) = u i ( r j , ~ - ~ ) + ~ ~ ~ I n ( r ~ i - t ) .  

101 
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to explain the discrepancy. The simulations of [l]  have too large statistical errors for a 
similarly detailed comparison. 

Averages of the squared end-to-end distance for longer chains are shown in figure 2. 
They clearly indicate that ,9 = 111.2 is far below the 0 temperature in agreement with 
the fact that pa is negative and decreasing with N .  In figure 3 we show our data for 
,9yinc = p(p?-yY-,),  which represents the free energy needed to add one more monomer 
to the chain. At the 0 point we expect yinc to be independent of N .  The chains are still too 
short to pin down Be, exactly, but the plots unambiguously show that ,9" is much smaller 
then 0.36, the value given in 121. Together with the data from figure 2 we would say that 
0.2 < ,9e < 0.23. Both the data of figure 2 and that of figure 3 were produced using the 
hard-rod potential for bonded monomers and the full U potential for non-bonded monomers, 
i.e. without performing any cut-off at large ri . j .  Each data set is based on at least lo6 'tours'. 
We mean by 'tour' the set of all (correlated) chains produced by the same initial subroutine 
call from the main routine. 

4. Generalizations and outlook 

In the above applications, we did not truncate the potential at large r .  Thus, inserting a 
new monomer lakes a time O(N). For larger N this is no longer tolerable. If the potential 
is truncated in such a case, one should also use efficient data structures for searching for 
relevant neighbours 1231. With this we can achieve O(1) behaviour. 

Our algorithm as described above can become inefficient for two main reasons, but 
in both cases this can be cured by minor modifications: first of all, if the temperature is 
very low, the Boltzmann factors e-~*"~ for single monomers can become very large. The 
efficiency of the method results from the fact that large Boltzmann factors for the entire 
chain are split into smaller factors for individual monomers. If the latter factors themselves 
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Figure 2. Simulation results for the average squared end-to-end distance for f l  = 
0.175. . . . , 0.375 wifh Afl = 0.025 aod additionally far f l  = 0.4. 0.6. If1.2. The data clewly 
show that the chains are already collapsed at f l  > 0.25. 

. . . . .  , 

10 too 
N 

Figure 3. Simulation results for flpInc for f l  = 0.175, . . . , 0.375 with Afl = 0.025. One CM 

see that pin' is independent of N for ,9 % 0.2 to 0.225. So we can expect the e point somewhere 
between these two values. 

become large and are spread over a large interval, then most random positions will either 
be immediately discarded since they have very small wj, or they will have very large wi 
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and lead thus to very many replicas and correspondingly to huge fluctuations. A case where 
this made our method quite unsuccessful is the random heteropolymer model of 1241. 

The simplest way out of this dilemma consists in choosing M >> 1. In this way we will 
have even more points which are essentially useless since they have very small wj, but the 
regions in state space with high probability will be sampled more evenly, and this should 
be more important. Another popular remedy consists in making the bulk of the simulations 
at higher temperatures, and quenching down to the desired temperatures in regular time 
intervals [IS]. 

The other case where the above algorithm gives poor results is provided by systems 
in which originally favoured configurations lead finally to dead ends, while originally 
unfavoured configurations become more important as the growth of the system continues. 
Two specific examples are dense polymer systems in ?D [6] and polymers with long-range 
repulsive forces [12, 131. 

Assume we want to grow a long self-avoiding walk in a finite ?D region such that it fills 
a large fraction of the area. As we place the first monomers, all configurations are equally 
likely, but those which leave large closed voids are all dead ends since the walk later on 
cannot penetrate into the voids. Obviously it would be much better in this case to bias the 
walks against large voids from the very beginning. 

The situation is similar for a polymer with repulsive Coulomb potentials. There, unless 
the force is very strong, the effect of the repulsion is not too strong for end monomers, and 
hence new monomers are added without a strong radial bias, but the stretching force on a 
monomer deep inside the chain is much bigger (since all forces essentially add up), and the 
configuration is much more stretched inside the chain. Thus, when an existing chain is to be 
elongated, most of the existing configurations have to be discarded, in order to be replaced 
by stretched configurations which at first (when they are assembled) are very improbable. 

As we said, a way out of this problem is to use biased walks. This means that the 
number of replicas is not strictly proportional to wj but is larger in those regions which 
we suspect to become more important later. Of course it means also that we have to 
replace (IO) by a weighted sum. It is e.g. known that the Rosenbluth trick [25] leads to 
a bias towards more compact SAWS. We found indeed that our method with Rosenbluth 
weights instead of uniform weights was more efficient in giving SAWS which fill a square 
with periodic boundary conditions, but it leads to much larger statistical fluctuations at low 
density. We should point out that this possibility of biasing is independent of the choice of 
U("), something which seems to have been missed in [16, 17, 181. 

Finally, we tried our method also for non-polymeric systems. For instance, we simulated 
the ZD Ising model with spins numbered in the same way as they would be e.g. stored in 
a FORTRAN array. Though the method worked decently, it could not compete either with 
cluster flip methods (due to their much more efficient moves) or with conventional Monte 
Carlo schemes which can be made very efficient by vectorization and multispin coding. 
We should mention that the possible application to spin models, and to the Ising model in 
particular, was also pointed out in [26] in the context of the breadth first approach. 
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